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14 Descriptivestatistics

Daniel Ezra Johnson
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Introduction

When we have a small amount of data, we can avoid statistics com-

pletely.In suchcases,we caninspectanddiscusseachandeveryobservationor
datapoint.Forexample,if wemeasuredthefundamentalfrequencies(F0)of three

siblings’speech,wemightobservethatBetty’svoicewas25Hz lowerthanSue’s,

but 100 Hz higher than Frank’s. It would probably be uninterestingto report

a statistic like the averagepitch of the family. With a larger dataset,like F0
measurementstaken from 1,000 men and 1,000 women, the situation is reversed.

It isnolongerpossibleto discusseachdatapoint individually,andwhile it canstill

beusefulto makegraphsthatdisplay everyobservation,we will usuallybe less
interestedin individualpointsandmoreinterestedin thepatternsor trendsformed

by groupsof points.
This is wheredescriptivestatistics come in. Descriptivestatisticsgenerally

constitutethe secondstepin a quantitativeanalysis.The■rststepis to display

thedatain atabularor graphicalformat,usingahistogram,barchart,scatterplot,
cross-tabulation,or othermethod.This will revealanypeculiaritiesof the data
that will shapefurther analysis.For example,a severelyskeweddatasetmay
motivate a transformation,or the use of non-parametricstatistics.The second

stepis thedescriptivestatisticsthemselves,which distill thecomplexitiesof the
datadownto asmall,manageablesetof numbers,abstractingawayfrom details
(and noise) in order to describethe basic overall propertiesof the data.This

processcansuggesttheanswersto existingquestionsor inspirenewhypotheses

to be tested. .
Soif wetakeasinglevariablelike voicepitch,wecantalk aboutitsdistribution

(are all pitchesequally common or are there one or more “peaks” at certain
frequencies?),its centraltendency(what is themosttypical pitch for a woman’s
voice?), its dispersion(how much do men’svoicesvary in pitch?),as well as
higher—orderpropertieslike skewnessand kurtosis.If we take two variablesat

once,we canreporton their associationor correlation(e.g.,what is therelation-
shipbetweenvoicepitch andtheageof thespeaker?)

Descriptive statisticsdescribesamplesof data, but they do not attemptto

answerquestions(make inferences)about the larger populationsfrom which
thesamplesaredrawn.So if we measuredthepitch of twenty Englishspeakers
andtwenty Germanspeakers,descriptivestatisticsmight tell us thattheEnglish
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samplehadanaverageF0 thatwas 10Hz higher
thantheGermansample.If wewantedto know what to makeof this result —in particular,whetherthe differ-

ence could be due to mere chance (sampling error) —we could perform astatisticaltestcalleda t—test.But in doing so,we would be leavingthedomain
of descriptive statistics and entering the realm of inferential statistics
(Chapter15).

.
Different typesof variableso■encall for distinctstatisticalmethods;thesearediscussed in Section 2. Data distributions are covered in Section 3, and the

following threesectionsdiscusshow to describedistributions:beginningwith
measuresof centraltendencyor “averages”in Section4, continuingwith meas-
uresof dispersionor “spread” in Section5, and concludingin Section6 with
higher-orderdescriptivestatistics.In Section7, we discusshow to quantify the
extentto which variablesrelateto oneanother:associationandcorrelation.Since
thechapterwill havebeenconcernedprimarily with continuous,numericvaria-
bles up to this point, Section8 turns its attentionto descriptivestatisticsfor
categoricalvariables.Thechapterconcludeswith Section9.

Twesofvar-ables ‘
The mostbasicdescriptivestatisticof all refersto thetypeof variable

underconsrderatron.Until we identify thetypeof variable,wedonotknowwhich
otherstatisticsareappropriateto apply. Linguistic variables,collectedthrough

,
acousticanalysis,impressionisticjudgment, experimentalmeasurement,ques-tionnaire categories, counting within corpora, and more, run the gamut of variable
types. '

The most fundamentaldivision here is betweencontinuousand categorical
variables.Continuousvariables are numeric measurementsthat can theoreti-
cally takeon any value, or at leastany value within a certainrange.F0 is an
exampleof acontinuousvariable; in principle it cantakeon anypositivevalue
eventhough in practice no one has a meanF0 of 5 Hz or 500 Hz.

Formani

measurements, reaction times, and lexical frequencies are other examples of
continuousvariables.For truly continuousvariables,no two observationsare

Ever identical.However,we can sometimestreatmoregranularnumericvaria-
' .

les,like frequencycounts,ratingson ascale,or valuesthathavebeenrounded,
asif theywerecontinuous.Continuousvariablesarethe input to linear regres-

.
sron(seeChapter16).

It rssometimesimportantto distinguishbetweeninterval-scaleandratio-scale

,
continuous variables. Interval-scale variables do not have anatural zero point, so it
Ismeaningless to perform multiplication, division, and certain other mathematical
andstatisticaloperations.For example,on the Fahrenheitscale,it is not mean-lngful to takea ratio of temperatures,andsaythat 80 degreesis twice ashot as40 degrees.However,we can compareintervals,and say that an increaseof
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20 degreesis twice as largeas an'increaseof 10 degrees.On the Kelvin scale,

though,whereabsolutezero is dennedmeaningfully,not only can we compare
intervals, but we can also take ratios. For example, we can indeed say that 400 K is

twice as hot as 200 K. Here and throughoutthis chapter,we will sometimes

employnon~linguisticexamplesin orderto makeconceptsor argumentsclearer.
Here, we have shown how interval-scale and ratio-scale variables can measure

temperature,with thedifferencelying in thechoiceof arelativelynon-meaningful

(Fahrenheit)vsmeaningful(Kelvin) zeropoint.A relatedissueariseswhenweuse

asubject’sdateof birth asanindependentvariable.Wecoulduse“1900,” “1925,”
“1950,” “1975,” or “0,“ “25,” “50,” “75” for the samefour speakers,and while the

meanswill be interconvertibleandthe standarddeviationswill not change,the

secondapproachgivesmoreusefulcoefncientsin regression,sincewe will notbe

makinganypredictionsabout0 AD.
Unlike continuousvariables,categorical variableshavevaluesthat fall into

two or more distinct categories,rather than having a range of intermediate
possibilities. If therearemore than two categories,we can make a distinction
between ordinal and nominal variables. For ordinal variables, the categories

have a natural order; the categories of nominal variables have no natural order.

Classicexamplesof ordinal sociolinguistic variablesare the contraction and

deletionof theAfrican-AmericanEnglishcopula(heis tall, he3‘tall, hetall) and

the lenition of coda/s/ in Spanish,nrst to [h] andthen to zero ([03 libros, loh
libroh, lo libro). Examples of nominal variables are the alternation among that,

which, andzero in introducinga relativeclause(thecakethat I prefer, thecake
whichI prefer, thecakeI prefer), or whethera quotationis introducedwith say,

go, belike, or someothervariant.In thesecases,thereis no obviousorderingof

thepossibilities.
If thereareonly two categories,thenwe aredealingwith a binary (or dichot—

omous)variable. This type of variable is very common in linguistics, in both
phonologyandsyntax.Binary variablescaninvolve thepresencevs absenceof

someelement(e.g.,theword-nnalcoronalstopin lastchanceor thenegativenein
French).More generally,binaryvariablescancaptureanyalternationbetweentwo
possibilities,as in the (ing) variable (gonenshing vs gonenshin ’), the dative
alternation(hegaveJohn the bookvs hegavethebookto John), or the particle
alternation(shetookout thetrashvsshetookthetrashout).Binary variablesare
the usual input to logistic regression (Chapter 16).

In this chapter,we will mainly discussdescriptivestatisticsas applied to
continuousvariables.Wewill coverdescriptivestatisticsfor categoricalvariables,
includingbinary variables,in Section8.

;3
Distributions

When we havea variable,especiallya continuousone, one of the
nrst things we shoulddo is examineits distribution. The temptation is to skip
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Figure14.1.Stem-and-leafplot of daily temperaturesfor Albuquerquein 2010

aheadto summarystatistics like the meanand standarddeviation. Thesedo
describethe distribution in an overall way, but asalways,a picture is worth a
handnrl of numbers.A distribution refers to the frequencyof the valuesof a
variable. It askshow often the variabletook on particularvaluesasopposedto
others.

This questionappliesto linguistic variablesof whateversort. Sometimes,the
distribution is expected(or hoped)to nt a particular shapecalled normal (see
below),enablingtheuseof morepowernrlparametricstatisticsinsteadof having
to rely on lesspowerfulbut equallyusefulnon-parametricstatistics.

Supposeour variableis theaveragedaily temperaturein Albuquerquein 2010
(ADTA 2011).Naturally,thedataconsistof 365measurements.Wecandisplayit
in raw form as follows: 30, 35, 36, 33, 34,

. . .,
39, 40, 35, 37, 22 (this only shows

thenrstnveandthelastnvedaysof theyear).This formatisnotveryusenrl.If we
‘ were interestedin 2010 for its own sake,we might want to make a plot of

.
temperatureagainsttime, showinghow thetemperaturechangedover thecourse

,
of theyear(veryroughlyspeaking,it wentupandthendown!).Thiswouldbeone
versionof abivariate(two-variable)distribution.But if we aremoreinterestedin

.
how 2010 measuresup againstother years,then we want to describethe uni-

‘ varzatedistributionof the2010data.For example,we might want.to know how
manydayswerebelow 30 degrees.(Four) And how manydayswereabove90
degrees.(None)

Thestem-and-leafplot, popularizedby Tukey(1977),is onewayof showinga
; univariatedistribution.For the2010Albuquerquetemperatures,if we divide the

_
datainto lO-degreeranges,we obtainthestem-and-leafplot in Figure 14.1.

Eachtemperatureissplit up into a“stem” anda“leaf" —for example,29 is split

.
into 2 (shownon the len) and9 (shownon the right). The plot showsthat there

“ were4 daysin the205(22,25, 29, 29), andthatthereweremoredaysin the405
; and703 than in the 505 and 60s, and so on. Once you know how to read it, a stem-

!
and-leafplot is moreimmediatelyrevealingthanaconventionaltableof frequen-
cies, such as Table 14.1. The table shows absolute frequency (number of days in
eachtemperature range) and relative frequency, the latter expressed as a percent-

,
age(numberof days in eachrangedivided by the total numberof days,365,
multipliedlby 100). Annual temperature data have a nxed denominator of 365 (or
366),but if we were going to comparedistributionswith different N (the total
number in a distribution is usually called N) then the relative frequency is much
more useful.
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