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Mixed models
and why sociolinguists should use them
Daniel Ezra Johnson




VARBRUL / GoldVarb

other

dependent variable (DV)

DV, response, y

factor group, independent variable (V)

IV, factor (categorical), predictor, x

factor

level

factor weight

coefficient, effect, estimate, B

factor weight range

similar to ‘effect size’

input probability

intercept

applications / total

(response) proportion

lmer other
mixed model mixed-effects, hierarchical, or multilevel model
fixed effect main effect
(all) fixed-effects model flat model

conditional modes of random effects

random effect estimates, random effect BLUPs

Terminological ‘translations’




PROPERTIES OF DATA GoldVarb | Rbrul R POSSIBLE ANALYSIS
response / DV: 2 categories v v v logistic regression
response: 3+ categories (74 ordinal, multinomial logistic
response: count v Poisson regression, etc.
response: continuous v v linear regression
predictor(s) / IV(s) : categorical 4 4 4 (any)
predictor(s): continuous v v (any)
predictor(s): have interactions hard (74 (any)
random intercept(s) ? v v mixed model
random slope(s) ?? 4 mixed model
lots of data (need for speed) (4 (4

hard v plots and graphics
v other statistical methods
v “slash” operator

?

?

user friendly

Comparing Software Tools




GoldVarb Rbrul R

Finding the right tool for the job



* mixed models: both fixed effects and random effects
e fixed effect: ordinary regression predictor (V)

* random effect: theoretically sampled from a population
e est. population variance (s.d.) is the real parameter
e individual estimates (BLUPs) “shrunk” towards mean
* residual random effects should be normally distributed

* random intercept: individuals “high” or “low” (input prob.)
* random slope: individuals differ w.r.t. predictors (constraints)

* in model fitting, there is a penalty on the random effects
* as much variance as possible assigned to fixed effects

* only the left-over variance is assigned to random effects

* this random effect penalty allows nested models to fit

* sometimes fixed vs. random (or separate runs) is a valid choice
* but nested predictors must be random effects in a mixed model

What are mixed models?



Mixed models for nested data,



When we don’t need mixed models



And when we might need them
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Random effects and significance
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Unbalanced data and effect size
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age coefficient w/ no random effect: 0.113 log-odds/year
age coeff. w/ speaker random effect: 0.205 log-odds/year

Crossed factors and effect size



speaker-nesting predictors

constant within (data from) each speaker
age? gender race class c.o.p. ...

* significance more accurate:
p = larger, “no longer significant”?

* effect sizes more accurate with
unbalanced data: larger/smaller

speaker-crossed predictors
vary within (data from) each speaker
age? style phon./gram. context...

* effect sizes more accurate:
larger (logistic regression only)

summary: speaker effect’s effects



speaker-nesting predictors word-nesting predictors
constant within (data from) each speaker constant within (data from) each word
age? gender race class c.o.p.... frequency gram. cat. int. phon. ..

* significance more accurate:
p = larger, “no longer significant”?

* effect sizes more accurate with
unbalanced data, larger/smaller

speaker-crossed predictors word-crossed predictors
vary within (data from) each speaker vary within (data from) each word
age? style phon./gram. context... stress style ext. phon. ...

* effect sizes more accurate:
larger (logistic regression only)

Word effect just like speaker effect



speaker-nesting predictors word-nesting predictors
constant within (data from) each speaker constant within (data from) each word
age? gender race class c.o.p.... frequency gram. cat. int. phon. ..

* significance more accurate:
p = larger, “no longer significant”?

* effect sizes more accurate with
unbalanced data, larger/smaller

speaker-crossed predictors  word-crossed predictors
vary within (data from) each speaker vary within (data from) each word
age? style phon./gram. context... stress style ext. phon. ...

word . speaker
% » effect sizes more accurate:

larger (logistic regression only) &

Crossed random effects for speaker & word



e use random effect estimates to identify ‘new’ fixed effects
- modeled subject/word variation may include true
individual variation, as well as unmodeled fixed effects

* use random effect estimates to (empirically) build groups

* use random effect estimates as predictors in new models

e use random effect population variances to predict behavior
of new subjects and words not in the original sample

e can perform an easy transformation into the ‘language’ of
GoldVarb (with some caveats) — this is not a real problem

Other benefits of mixed models



* cutting-edge statistics,

like VARBRUL was in the 1970’s 0. - [ o R (1)
* follow evolution on R-sig-ME T e 2L
e double debate over p-values:
* best way to calculate them s
* should they be used at all? e -
e convergence problems o) g Lol B (181
* requires more data (1000’s > 100’s) For o iven 8. the value o 3 e o7 that masimi (2.18) o
* mixed model tool can be used B

well or badly, just like any model
* still need to address multicollinearity e ot o
e should not be the only tool TN
* mixed models are a better hammer,
but everything is still not a nail

e “All models are wrong ... but some are useful.” — Box

Drawbacks to mixed models 54




e it is fixed-effect models Sali Tagliamonte  Ppinheiro, José C. and Douglas M.

that make an assumption: fellow panelists Bates. 2000. Mixed-Effects Models

* that residual subject and Josef Fruehwald NS & S-PLUS. New York: Springer.
word variances are zero Maryam Bakht

« i.e. that word-specific Meghan Armstrong Baayen, R. Harald, Douglas J.

Davidson and Douglas M. Bates.
2008. Mixed-effects modeling with

phonology is wrong Kyle Gorman

* mixed models are agnostic Kirk Hazen  crossed random effects for subjects
* random effects can be zero David Sankoff and items. Journal of Memory and
* they do not assume a word- Florian Jaeger Language 59, 390-412.
specific (or speaker-specific) Rbrul testers [l recommend this whole special
phonology, they allow for it issue on Emerging Data Analysis.]

if it is supported by the data | R de"e[ﬁps
e must model speaker/word = £ Johnson, Daniel Ezra. 2009.
. . Getting off the GoldVarb Standard:

* with random effects, if nested -

introducing Rbrul for mixed-effect
variable rule analysis. Language and
Linguistics Compass 3/1: 359-383.

* often crossed r. effects for both L
* or other results will be wrong >
* maybe not very far wrong?
* as quantitative linguists, = Doug Bates 1mer Rxwwzg:;:(e:::ﬁgnfsz);Z;t/

we strive for right numbers Qdoba on Bleecker Rbrul.R

Conclusions, thanks, references




