

Mixed models

and why sociolinguists should use them

Daniel Ezra Johnson

VARBRUL / GoldVarb	other
dependent variable (DV)	DV, response, y
factor group, independent variable (IV)	IV, factor (categorical), predictor, x
factor	level
factor weight	coefficient, effect, estimate, β
factor weight range	similar to 'effect size'
input probability	intercept
applications / total	(response) proportion

lmer	other
mixed model	mixed-effects, hierarchical, or multilevel model
fixed effect	main effect
(all) fixed-effects model	flat model
conditional modes of random effects	random effect estimates, random effect BLUPs

Terminological 'translations'

PROPERTIES OF DATA	GoldVarb	Rbrul	R	POSSIBLE ANALYSIS
response / DV: 2 categories	~	✓	✓	logistic regression
response: 3+ categories			✓	ordinal, multinomial logistic
response: count			✓	Poisson regression, etc.
response: continuous		'	v	linear regression
predictor(s) / IV(s) : categorical	~	✓	v	(any)
predictor(s): continuous		✓	✓	(any)
predictor(s): have interactions	hard		'	(any)
random intercept(s)	?	✓	~	mixed model
random slope(s)	??		v	mixed model
lots of data (need for speed)		✓	✓	
		hard	✓	plots and graphics
			~	other statistical methods
	~			"slash" operator
	?	?		user friendly

Comparing Software Tools

GoldVarb Rbrul R

Finding the right tool for the job

- mixed models: both fixed effects and random effects
- fixed effect: ordinary regression predictor (IV)
- random effect: theoretically sampled from a population
 - est. population variance (s.d.) is the real parameter
 - individual estimates (BLUPs) "shrunk" towards mean
 - residual random effects should be normally distributed
- random intercept: individuals "high" or "low" (input prob.)
- random slope: individuals differ w.r.t. predictors (constraints)
- in model fitting, there is a penalty on the random effects
 - as much variance as possible assigned to fixed effects
 - only the left-over variance is assigned to random effects
- this random effect penalty allows nested models to fit
 - sometimes fixed vs. random (or separate runs) is a valid choice
 - but nested predictors must be random effects in a mixed model

What are mixed models?

Mixed models for nested data

When we don't need mixed models

And when we might need them

age w/ no random effect age + random intercept: speaker

Random effects and significance

large effect size: 0.167 vs. 0.833 small significance: p = 0.08

small effect size: 0.45 vs. 0.55 larger significance: p = 0.002

Significance vs. 'effect size'

age w/ no random effect age + random intercept: speaker

Unbalanced data and effect size

age coefficient w/ no random effect: 0.113 log-odds/year age coeff. w/ speaker random effect: 0.205 log-odds/year

Crossed factors and effect size

speaker-nesting predictors

constant within (data from) each speaker age? gender race class c.o.p. ...

- significance more accurate:p = larger, "no longer significant"?
- effect sizes more accurate with unbalanced data: larger/smaller

speaker-crossed predictors

vary within (data from) each speaker age? style phon./gram. context...

 effect sizes more accurate: larger (logistic regression only)

Summary: speaker effect's effects

speaker-nesting predictors

word-nesting predictors

constant within (data from) each speaker age? gender race class c.o.p. ...

constant within (data from) each word frequency gram. cat. int. phon. ..

- significance more accurate:p = larger, "no longer significant"?
- effect sizes more accurate with unbalanced data, larger/smaller

speaker-crossed predictors

vary within (data from) each speaker age? style phon./gram. context...

word-crossed predictors

vary within (data from) each word stress style ext. phon. ...

 effect sizes more accurate: larger (logistic regression only)

Word effect just like speaker effect

speaker-nesting predictors

word-nesting predictors

age? gender race class c.o.p. ...

constant within (data from) each speaker constant within (data from) each word frequency gram. cat. int. phon. ..

- significance more accurate: p = larger, "no longer significant"?
- effect sizes more accurate with unbalanced data, larger/smaller

speaker-crossed predictors

vary within (data from) each speaker age? style phon./gram. context...

word-crossed predictors

vary within (data from) each word stress style ext. phon. ...

word

• effect sizes more accurate: larger (logistic regression only) speaker

Crossed random effects for speaker & word

- use random effect estimates to identify 'new' fixed effects
 - modeled subject/word variation may include true individual variation, as well as unmodeled fixed effects
- use random effect estimates to (empirically) build groups
- use random effect estimates as predictors in new models
- use random effect population variances to predict behavior of new subjects and words not in the original sample
- can perform an easy transformation into the 'language' of GoldVarb (with some caveats) – this is not a real problem

Other benefits of mixed models

- cutting-edge statistics,
 like VARBRUL was in the 1970's
 - follow evolution on R-sig-ME
- double debate over p-values:
 - best way to calculate them
 - should they be used at all?
- convergence problems
 - requires more data (1000's > 100's)
- mixed model tool can be used well or badly, just like any model
 - still need to address multicollinearity
- should not be the only tool
 - mixed models are a better hammer, but everything is still not a nail

Theory and Computational Methods for LME Models

Substituting (2.16) into (2.15) into (2.6) provides the likelihood as

$$\begin{split} L\left(\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma^{2} | \boldsymbol{y}\right) &= \prod_{i=1}^{M} \frac{\exp\left[-\left\|\boldsymbol{c}_{0(i)} - \boldsymbol{R}_{00(i)} \boldsymbol{\beta}\right\|^{2} / 2 \sigma^{2}\right]}{\left(2\pi \sigma^{2}\right)^{n_{i} / 2}} \operatorname{abs}\left(\frac{\left|\boldsymbol{\Delta}\right|}{\left|\boldsymbol{R}_{11(i)}\right|}\right) \\ &= \frac{\exp\left(-\sum_{i=1}^{M} \left\|\boldsymbol{c}_{0(i)} - \boldsymbol{R}_{00(i)} \boldsymbol{\beta}\right\|^{2} / 2 \sigma^{2}\right)}{\left(2\pi \sigma^{2}\right)^{N / 2}} \prod_{i=1}^{M} \operatorname{abs}\left(\frac{\left|\boldsymbol{\Delta}\right|}{\left|\boldsymbol{R}_{11(i)}\right|}\right). \end{split}$$

The term in the exponent has the form of a residual sum-of-squares for β pooled over all the groups. Forming another orthogonal-triangular decomposition

$$\begin{bmatrix} R_{00(1)} & c_{0(1)} \\ \vdots & \vdots \\ R_{00(M)} & c_{0(M)} \end{bmatrix} = Q_0 \begin{bmatrix} R_{00} & c_0 \\ 0 & c_{-1} \end{bmatrix}$$
(2.17)

produces the reduced form

$$L\left(\boldsymbol{\beta}, \boldsymbol{\theta}, \sigma^{2} | \boldsymbol{y}\right)$$

$$= \left(2\pi\sigma^{2}\right)^{-N/2} \exp\left(\frac{\left\|\boldsymbol{c}_{-1}\right\|^{2} + \left\|\boldsymbol{c}_{0} - \boldsymbol{R}_{00}\boldsymbol{\beta}\right\|^{2}}{-2\sigma^{2}}\right) \prod_{i=1}^{M} \operatorname{abs}\left(\frac{|\boldsymbol{\Delta}|}{|\boldsymbol{R}_{11(i)}|}\right).$$
(2.18)

For a given θ , the values of β and σ^2 that maximize (2.18) are

$$\hat{\beta}(\theta) = R_{00}^{-1}c_0$$
 and $\hat{\sigma}^2(\theta) = \frac{\|c_{-1}\|^2}{N}$, (2.19)

which give the profiled likelihood

$$\begin{split} L(\boldsymbol{\theta}|\boldsymbol{y}) &= L\left(\widehat{\boldsymbol{\beta}}(\boldsymbol{\theta}), \boldsymbol{\theta}, \widehat{\sigma}^{2}(\boldsymbol{\theta})|\boldsymbol{y}\right) \\ &= \left(\frac{N}{2\pi \left\|\boldsymbol{c}_{-1}\right\|^{2}}\right)^{N/2} \exp\left(-\frac{N}{2}\right) \prod_{i=1}^{M} \operatorname{abs}\left(\frac{|\boldsymbol{\Delta}|}{|\boldsymbol{R}_{11(i)}|}\right), \end{split} \tag{2.20}$$

or the profiled log-likelihood

$$\ell(\boldsymbol{\theta}|\boldsymbol{y}) = \log L(\boldsymbol{\theta}|\boldsymbol{y})$$

$$= \frac{N}{2} \left[\log N - \log(2\pi) - 1 \right] - N \log \|\boldsymbol{c}_{-1}\| + \sum_{i=1}^{M} \log \operatorname{abs} \left(\frac{|\boldsymbol{\Delta}|}{|\boldsymbol{R}_{11(i)}|} \right).$$
(2.21)

The profiled log-likelihood (2.21) is maximized with respect to θ , producing the maximum likelihood estimate $\hat{\theta}$. The maximum likelihood estimates $\hat{\beta}$ and $\hat{\sigma}^2$ are then obtained by setting $\theta = \hat{\theta}$ in (2.19).

"All models are wrong ... but some are useful." – Box

Drawbacks to mixed models

- it is fixed-effect models that make an assumption:
 - that residual subject and word variances are zero
 - i.e. that word-specific phonology is wrong
- mixed models are agnostic
 - random effects can be zero
 - they do not assume a wordspecific (or speaker-specific) phonology, they *allow* for it if it is supported by the data
- must model speaker/word
 - with random effects, if nested
 - often crossed r. effects for both
- or other results will be wrong
 - maybe not very far wrong?
- as quantitative linguists, Doug Bates lmer we strive for right numbers Qdoba on Bleecker

Sali Tagliamonte Pinheiro, José C. and Douglas M. fellow panelists Bates. 2000. Mixed-Effects Models in S & S-PLUS. New York: Springer. Josef Fruehwald

Meghan Armstrong Kyle Gorman Kirk Hazen **David Sankoff** Florian Jaeger Rbrul testers R developers

Baayen, R. Harald, Douglas J. Davidson and Douglas M. Bates. 2008. Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language 59, 390-412. [I recommend this whole special issue on Emerging Data Analysis.]

Johnson, Daniel Ezra. 2009. Getting off the GoldVarb Standard: introducing Rbrul for mixed-effect variable rule analysis. Language and Linguistics Compass 3/1: 359-383.

> Rbrul (a work in progress) is at: www.danielezrajohnson.com/ Rbrul.R

Conclusions, thanks, references

Maryam Bakht