Quantitative Methods in Sociolinguistics

Sociolinguistics Summer School 5 University College Dublin 30 July 2014

Daniel Ezra Johnson Lancaster University d.e.johnson@lancaster.ac.uk www.danielezrajohnson.com/sss5.pdf

"the old testament"

There were (quantitative) (sociolinguistic) studies of language variation before Labov:

- Terracher 1914.
- Duraffour 1927.
- Martinet 1945.
- Putnam & O'Hern 1955.

Malkiel, Yakov. 1984. Revisionist dialectology and mainstream linguistics. *Language in Society* 13: 29-66. Joseph, John E. 2002. Koerner, E. F. K. 2003.

"John The Baptist"

Table I. Number of children favoring -ing and -in variant suffixes in TAT protocolsaccording to sex.

	-ing>-in	-ing≪-in	
Boys Girls	$\frac{5}{10}$	$\frac{7}{2}$	Chi square: 2.84; $05 < P < .1$ (by two-tailed test)

Fischer, John L. 1958. Social influences on the choice of a linguistic variant. *Word* 14(1): 47-56.

TABLE 3. GEOGRAPHICAL DISTRIBUTION OF CENTRALIZATION

.

.

.

.

-	CI /ai/	CI /au	CI /ai/	CI /au/
Down-island			0.35	0.33
Edgartown	0.48	0.55		
Oak Bluffs	0.33	0.10		
Vineyard Haven	0.24	0.33		
Up-island			0.61	0.66
Oak Bluffs	0.71	0.99		
No. Tisbury	0.35	0.13		
West Tisbury	0.51	0.51		
Chilmark	1.00	0.81		
Gay Head	0.51	0.81		

TABLE 4. CENTRALIZATION BY OCCUPATIONAL GROUPS

	CI /ai/	CI /au/
fishermen	1.00	0.79
farmers	0.32	0.22
others	0.41	0.57

TABLE 5. CENTRALIZATION BY ETHNIC GROUPS

.

	English	Portuguese	Indian
Age Level	CI CI /ai/ /au/	CI CI /ai/ /au/	CI CI /ai/ /au/
	0.36-0.34	0.26-0.26	0.32-0.40
46 to 60 31 to 45	0.85-0.63 1.08-1.09	0.37-0.59 0.73-0.83	0.71-1.00 0.80-1.33
under 30 all ages	0.35-0.31	0.34-0.52	0.47-0.88
an agos	0.67-0.60	0.42-0.54	0.56-0.90

.

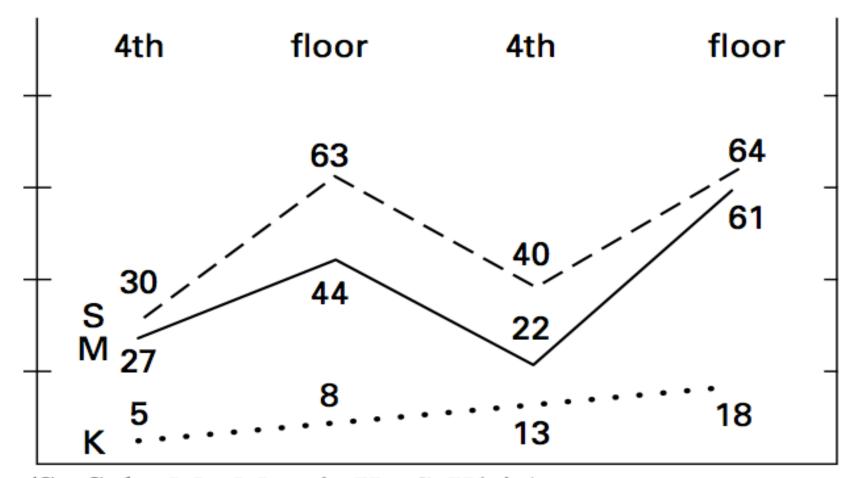

.

TABLE 6. CENTRALIZATION AND ORIENTATION TOWARDS MARTHA'S VINEYARD

Persons		CI /ai/	CI /au/
40	Positive	0.63	0.62
19	Neutral	0.32	0.42
6	Negative	0.09	0.08

The fact that this table shows us the sharpest example of stratification we have yet seen, indicates that we have come reasonably close to a valid explanation of the social distribution of centralized diphthongs.

Labov, William. 1963. The social motivation of a sound change. *Word* 19: 273-309.

(S=Saks, M=Macy's, K=S. Klein) Figure 3.2 Percentage of *all (r-1)* by store for four positions

Labov, William. 1966. *The social stratification of English in New York City*. Ph.D. dissertation, Columbia.

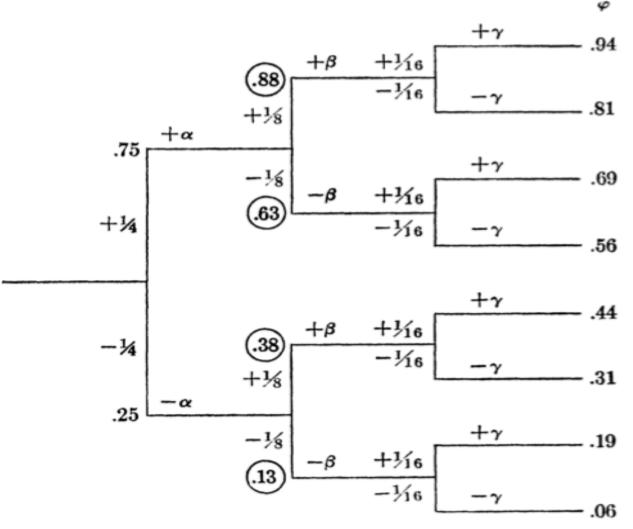


FIGURE 10 Geometric ordering of variable constraints α , β , γ .

Labov, William. 1969. Contraction, deletion, and inherent variability of the English copula. *Language*.

Input probability $p_0 = 1$.

Preceding environment:	[+sib]	$\begin{bmatrix} + cns \\ - sib \end{bmatrix}_{-}$	[-cns]
Effect:	1	0.85	0.37
Following environment:	_[+sib]	$\begin{bmatrix} + cns \\ - sib \end{bmatrix}$	_[-cns]
Effect:	1	0.50	0.10
Occupational class:	workers	professional	1
Effect:	1	0.35	
Sex:	women	men	
Effect:	1	1	

TABLE 6. Effect of each factor affecting que deletion in MF, according to a multiplicative application probabilities model.

Cedergren, Henrietta & Sankoff, David. 1974. Variable rules: performance as a statistical reflection of competence. *Language*.

$$p = \beta_0 + \beta_a + \ldots + \beta_n$$

$$p = p_0 + p_i + p_j + \cdots + p_k$$

$$\log p = \beta_0 + \beta_a + \ldots + \beta_n$$
$$p = p_0 \times p_i \times p_j \times \cdots \times p_k$$

$$\log \frac{p}{1-p} = \beta_0 + \beta_a + \dots + \beta_n$$
$$\left(\frac{p}{1-p}\right) = \left(\frac{p_0}{1-p_0}\right) \times \left(\frac{p_i}{1-p_i}\right) \times \left(\frac{p_j}{1-p_j}\right) \times \dots \times \left(\frac{p_k}{1-p_k}\right)$$

$$\left(\frac{p}{1-p}\right) = \left(\frac{p_0}{1-p_0}\right) \times \left(\frac{p_i}{1-p_i}\right) \times \left(\frac{p_j}{1-p_j}\right) \times \cdots \times \left(\frac{p_k}{1-p_k}\right)$$

TABLE 3.2 Contribution of Grammatical Category, Following Phonological Segment, and Following Stress to the Deletion of Plural (s)^a

Grammatical category		Following phonological segment		Following stress	
Adjective	.69	Pause	.65	Weak	.56
Noun	.57	Consonant	.47	Heavy	.44
Determiner	.26	Vowel	.37		

^{*a*} Input probability = .65.

Poplack, Shana. 1980. The notion of the plural in Puerto Rican Spanish: competing constraints on (s) deletion. In Labov (ed.)

$$\left(\frac{p}{1-p}\right) = \left(\frac{p_0}{1-p_0}\right) \times \left(\frac{p_i}{1-p_i}\right) \times \left(\frac{p_j}{1-p_j}\right) \times \cdots \times \left(\frac{p_k}{1-p_k}\right)$$

TABLE 6. Social factors contributing to the Canadian Vowel Shift in younger Toronto English speakers, by ethnic group and EO status (excluding tokens preceding a nasal consonant)

			(ε)		(æ)	
		Total N:	2,270		1,404	
		Input:	.205		.201	
Ethnicity and EO	Status					
British/Irish			.68		.51	
Italian	Low EO		.54		.60	
	High EO		.63		.82	
Chinese	Low EO		.32		.29	
	High EO		.30		.17	
	0	Range:		38		65
Speaker Sex		0				
Women			.56		.60	
Men			.44		.42	
		Range:		8		18

Hoffman, Michol F. & Walker, James A. 2010. Ethnolects and the city: ethnic orientation and linguistic variation in Toronto English. *Language Variation and Change* 22: 37-67.

$$\left(\frac{p}{1-p}\right) = \left(\frac{p_0}{1-p_0}\right) \times \left(\frac{p_i}{1-p_i}\right) \times \left(\frac{p_j}{1-p_j}\right) \times \cdots \times \left(\frac{p_k}{1-p_k}\right)$$

TABLE 6. Social factors contributing to the Canadian Vowel Shift in younger Toronto English speakers, by ethnic group and EO status (excluding tokens preceding a nasal consonant)

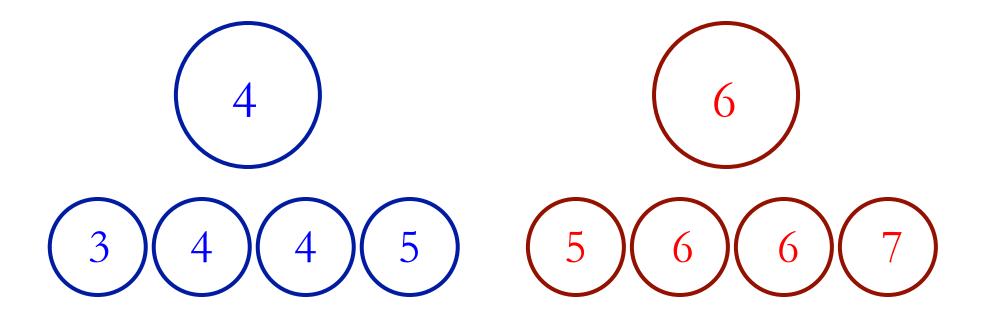
			(ε)		(æ)	
		Total N:	2,270		1,404	
		Input:	.205		.201	
Ethnicity and EO	Status					
British/Irish			.68		.51	
Italian	Low EO		.54		.60	
	High EO		.63		.82	
Chinese	Low EO		.32		.29	
	High EO		.30		.17	
	0	Range:		38		65
Speaker Sex		0				
Women			.56		.60	
Men			.44		.42	
		Range:		8		18

Each token was coded impressionistically as shifted or nonshifted, excluding any tokens where agreement between the authors could not be reached.

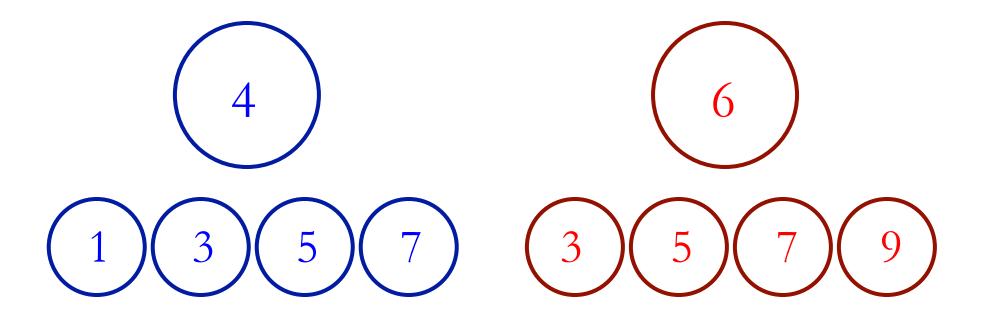
EO (ethnic orientation): For example, informants who identified themselves as "Canadian" received a score of 1; those who responded "Italian" received a score of 3; a response of "Italian-Canadian" or "both" received a score of 2.

response and predictors: categorical or continuous

categorical (binary) response logistic regression


continuous response linear regression

categorical predictors

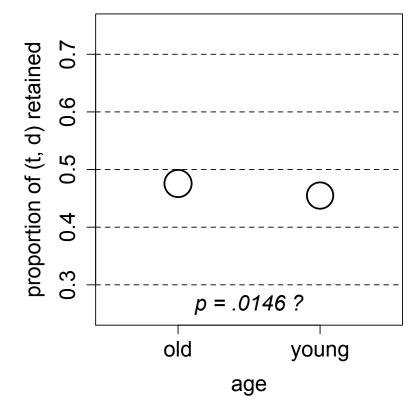

GoldVarb factor weights or log-odds coefficients

no GoldVarb no factor weights coefficients in same units as response

continuous predictors no GoldVarb log-odds coefficients no GoldVarb no factor weights coefficients in same units as response within-group differences affect the significance of between-group differences

small within-group variation significant between-group difference within-group differences affect the significance of between-group differences

large within-group variation non-significant between-group difference > age.fixed <- glm(tq1 ~ Age, buck, family = binomial)
> summary(age.fixed)

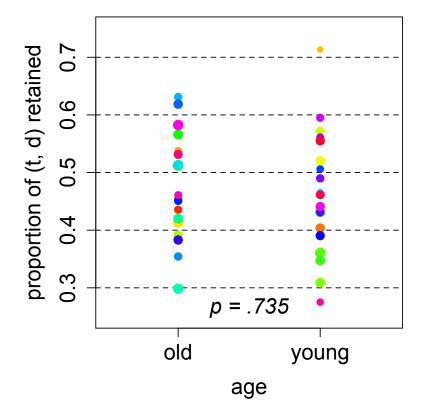

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -0.09701 0.02384 -4.070 4.7e-05 *** Ageyoung -0.08386 0.03433 -2.443 0.0146 *

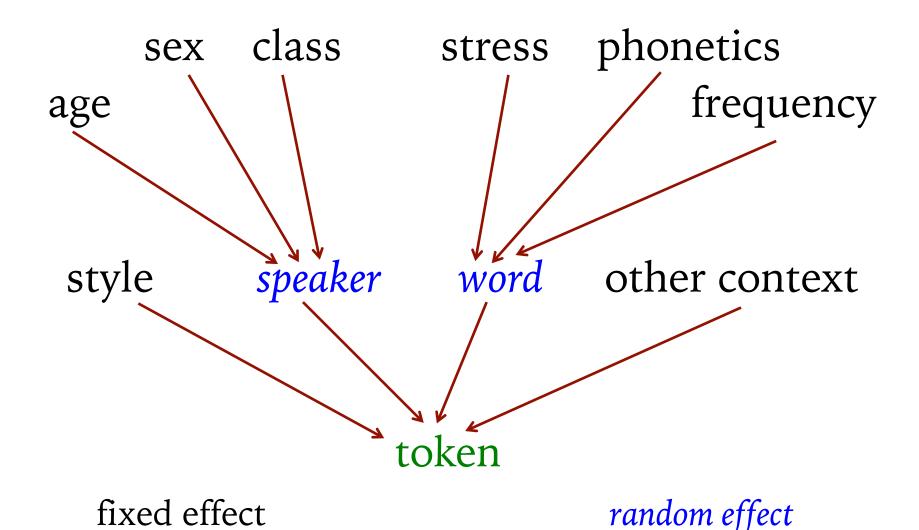
ONE-LEVEL ANALYSIS OF RESPONSE tq1 WITH PREDICTOR(S): Age (0.0146)

\$Age

factor	logodds	tokens	1/1+0	centered	factor	weight	
old	0.042	7056	0.476			0.51	
young	-0.042	6608	0.455			0.49	


> age.mixed <- glmer(tq1 ~ Age + (1 | Speaker), buck, family = binomial) > summary(age.mixed)

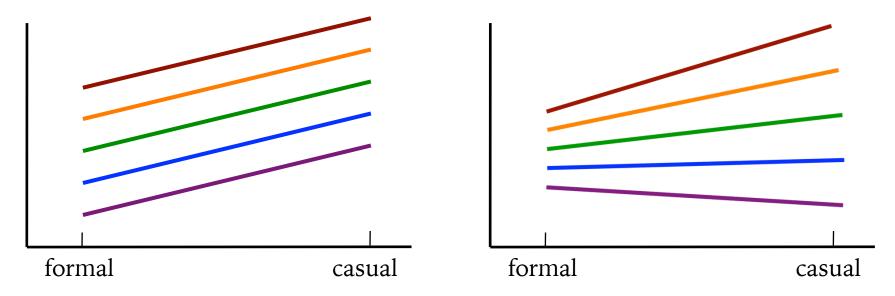
Fixed effects:							
	Estimate	Std.	Error	z value	Pr(> z)		
(Intercept)	-0.08842	0.	.08805	-1.004	0.315		
Ageyoung	-0.04229	0.	. 12471	-0.339	0.735		


ONE-LEVEL ANALYSIS OF RESPONSE tq1 WITH PREDICTOR(S): Speaker [random, not tested] and Age (0.735)

\$Age

factor	logodds	tokens	1/1+0	centered	factor	weight
old	0.021	7056	0.476			0.505
young	-0.021	6608	0.455			0.495

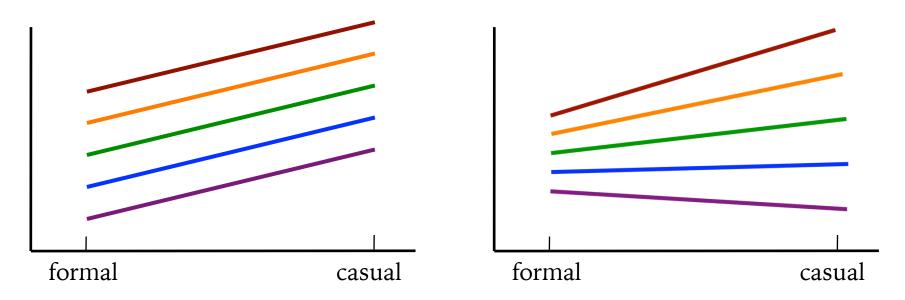
nesting: the relationship of variables in the mixed-effects model


random intercepts and random slopes

random intercept random slope (by speaker) random slope (by word)

individual-speaker variation: are mixed models necessary?

if only one speaker: no!
if only one speaker: no!
if no repeated measures per speaker: no! (dep't stores)
if every by-speaker difference is accounted for: no!
if they differ in overall rate/use of variable? intercept!
if they differ in the effect of other predictors? slope(s)!


individual-word variation: are mixed models necessary?

if only one word: no!

if no repeated measures per word: no! (dep't stores)

if every by-word difference is accounted for: no!

if words differ in overall rate/use of variable? *intercept!* if words differ in effect of other predictor(s)? *slope(s)!*

individual-speaker and -word variation: the received wisdom

do speakers differ in overall rate/use of variable?

- acknowledged to be true
- ignored in statistical practice

do speakers differ in the effect of other predictor(s)?

- claimed to be false (within a speech community)
- possibly true, ignored in statistical practice

do words differ overall *or* in the effect of predictor(s)?– may depend on phon. theory, ignored in practice

is regression enough? how am I going to do this?

what is R?

what is Rbrul?

what about RStudio?

are there any good books?

who else can I ask for help with statistics?

starting with R and Rbrul

- 1) To download and install R, go to: http://cran.r-project.org
- 2) To install "packages" that will be needed, start R and execute these commands by typing at the > prompt:
- > install.packages("ggplot2") (this is one graphics package)> install.packages("lme4") (this is for mixed models)
- > install.packages("lmerTest") (this helps lme4 provide p-values)
- If these install cleanly, you will not need to install them again.
- 3) To load packages (needs to be done each time you start R):
- > load(ggplot2) > load(lme4) > load(lmerTest)
- 4) To install Rbrul (needs to be done each time you start R):
- > source("http://www.danielezrajohnson.com/Rbrul.R")
- 5) To start Rbrul:
- > rbrul()